Question	Acceptable Answers	Reject	Mark
Number			
1(a)	C_nH_{2n}		1
	ALLOW letters other than n		

Question Number	Acceptable Answers	Reject	Mark
1(b)	A compound which contains (C=C) double bonds OR A compound that will undergo addition reactions OR Does not contain the maximum number of hydrogen atoms		1

Question Number	Acceptable Answers	Reject	Mark
1(c)(i)	E-3-ethylhex-2-ene (2)		2
	(1) mark for 3-ethylhex-2-ene (1) mark for 'E'		
	IGNORE any missing hyphens or any hyphens replaced by commas		
	Mark independently		

Question Number	Acceptable Answers	Reject	Mark
1(c)(ii)	The four atoms/four groups around the C=C double bond are different OR No two groups are the same OR There are no common groups on either side of the C=C double bond OR There are two alkyl groups on one of the carbon atoms (in the C=C double bond) OR There are three alkyl groups around the double bond OR An indication of the existence of Priority Rules (for E-Z nomenclature) OR One of the carbon atoms (of the C=C double bond) is not bonded to a hydrogen atom ALLOW 'functional groups' for 'groups'	Each side is not symmetrical	1

ALLOW displayed or skeletal formulae throughout 24(d)

Question	Acceptable Answers	Reject	Mark
Number			
1(d)(i)	CH ₃ CH ₃	C ₂ H ₆	1
	ALLOW displayed or skeletal formulae		
	throughout 24(d)		

Question	Acceptable Answers	Reject	Mark
Number			
1(d)(ii)	CICH ₂ CH ₂ CI / CH ₂ CICH ₂ CI	$_{2}H_{4}CI_{2}$	1

Question	Acceptable Answers	Reject	Mark
Number			
1(d)(iii)	HOCH ₂ CH ₂ OH / CH ₂ OHCH ₂ OH	$C_2H_6O_2$	1

Question Number	Acceptable Answers	Reject	Mark
1(d)(iv)	HOCH ₂ CH ₂ Br / CH ₂ OHCH ₂ Br	BrCH ₂ CH ₂ Br; C ₂ H ₅ OBr; C ₂ H ₄ Br ₂	1

Question Number	Acceptable Answers	Reject	Mark
1(e)	Major product route: $ \begin{array}{cccccccccccccccccccccccccccccccccc$		4
	First mark: Curly arrow from C=C to the H (in H-Br) AND curly arrow from the bond in H—Br to the Br (1	.)	
	Second mark: Structure of correct secondary carbocation (1	1)	
	Third mark: Curly arrow from anywhere on the bromide ion towards the C+ on the carbocation (1)	_	
	NOTE: The bromide ion must have a full negative charge, but the lone pair of electrons on the Bi NEED NOT be shown	-	
	Fourth mark: Choice of 2-bromopropane as major product (1	L)	
	For showing the major product mechanism correctly (4	1)	
	both arrows (1)	L)	
	carbocation intermediate (1)	L)	
	 attack by bromide ion (Bromide ion must show a full negative charge. The lone pair of electrons need not be shown) 	1)	
	choice of 2-bromopropane as major product (1)	.)	

Single-headed arrows used throughout **max (3)**Minor product route **max (3)**

If the minor product route is shown, the last mark is lost, but the first three marks can be scored consequentially as follows:-

- both arrows (1)
- carbocation intermediate (1)
- attack of bromide ion
 (NOTE: The bromide ion must show a full negative charge. The lone pair of electrons need not be shown)

NOTE:

If a correct mechanism for the electrophilic addition of HBr to **ethene** is shown then max **(2)** (i.e. the first and the third marks in the mechanism)

Question Number	Acceptable Answers	Reject	Mark
1(f)(i)	H H C H H C H H (1)		2
	HCH HCH HCH HCH HCH HCH HCH HCH HCH HCH		
	CH ₃ group does not have to be displayed.		
	IGNORE if any connectivity is shown from the $\mathbf{H_3}$ in a $C\mathbf{H_3}$ group		
	IGNORE bond angles		
	ALLOW one mark for just but-2-ene's structural formula		

Question Number	Acceptable Answers	Reject	Mark
Number 1(f)(ii)	ONE of:- No atoms lost (or gained) No elements lost (or gained) (Only) one product (is formed) (Produced by) an addition reaction Addition polymer(ization) Polymer is a repeat of the monomer No small molecules (formed)	(Monomer and polymer have) 'same number of carbon and hydrogen atoms'	1
	 No co-products No waste products Same C:H ratio Same ratio of carbon: hydrogen atoms Same ratio of each element Same ratio of atoms 		

Question Number	Acceptable Answers	Reject	Mark
1(f)iii	AND some correct justification is needed	Statements such as 'the atom	1
	ONE answer from:-	economy is almost 100%'	
	100% as addition reaction	OR Just "it has a	
	100% because all the atoms are incorporated into the polymer	high atom economy"	
	100% because (only) one product is formed		
	100% because (only) one desired product is formed		
	100% because no atoms are lost		
	100% because no waste products		
	100% because no small molecules (formed)		
	100% as no co-products		
	100% as no by-products		

Question	Acceptable Answers	Reject	Mark
Number			
2	C _n H _{2n+2} or any symbol in place of n		1
(a)(i)			
	Ignore C ₅ H ₁₂		

Number	
2 (structural / chain) isomers (a)(ii)	1

Question Number	Acceptable Answers	Reject	Mark
2 (a)(iii)	H H C H H H H H H H H H H H H H H H H H	Structures in which any bonds or atoms are omitted Structures with CH ₃ groups	1

Question Number	Acceptable Answers	Reject	Mark
2 (a)(iv)	2,2-dimethylpropane (1)		1
(a)(iv)	Allow dimethylpropane, 2-dimethylpropane 2,2 dimethylpropane, 2 dimethylpropane Ignore hyphens, commas, spaces		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(i)	$CH_4 + 1\frac{1}{2}O_2 \rightarrow CO + 2H_2O$ Formulae (1) balance (1)		2
	Or multiples		
	Ignore state symbols No TE on any other species		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	Insufficient / not excess oxygen / air	Reactant does not react completely with oxygen Just 'methane in excess'	1

Question		Reject	Mark
Number	Acceptable Answers		
2 (b)(iii)	Any two from CO is toxic / poisonous (allow harmful) (1)	Explosive	2
	Less energy is produced (allow (methane) becomes a less efficient fuel) (1)	Reactants wasted	
	Unburned hydrocarbons react to form compounds which are toxic / harmful (1)	Air pollution	
	Allow sooty deposits / carbon / particulates in atmosphere (ignore reference to global dimming) (1)		
	Unburned hydrocarbons are toxic / harmful (1)		
	If reference to damage to ozone layer, global warming and / or acid rain then max (1)		

Question Number	Acceptable Answers	Reject	Mark
*2(b) (iv)	Global warming / climate change (1)		3
	Due to (increase in concentration of) CO ₂ in the atmosphere / CO ₂ is a greenhouse gas (1)	(heat) from the sun	
	Traps the heat from the earth / IR radiation (re-radiating) from the earth (1) If reference to damage to ozone layer then max (2)	Global dimming	
	Photochemical smog is formed (0) NO _x is produced (by reaction of nitrogen & oxygen) (1) and reacts with (volatile) organic compounds in sunlight (1)	due to complete combustion of hydrocarbon fuels Effects (e.g. reactions of unburned	
	Ignore references to increase in (of concentration) of H_2O in the atmosphere	hydrocarbons) due to <i>incomplete</i> combustion	
	Ignore references to the effects of climate change		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(i)	The arrows show the movement of electrons (1)		2
	Single-headed/I denotes 1 electron and Double-headed/II denotes a pair of / 2 electrons /allow lone pair (1)	Just stating homolytic and heterolytic fission	
	Allow Explanations just in terms of electron movement in bond fission		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(ii)	Equation (1) two arrows correctly showing a homolytic fission (1) Here and in subsequent mechanisms the covalent bonds may be shown as lines or electron pairs or both The mechanism arrows may be shown on the same side or on different sides of the bond The single electrons need not be shown		2

Question Number	Acceptable Answers	Reject	Mark
2 (c)(iii)	CH ₄ + Cl → CH ₃ + HCl (1) CH ₃ + Cl ₂ → CH ₃ Cl + Cl · (1) Ignore state symbols and curly arrows. Ignore order of equations so these marks may be scored if an initiation step with fission of C – H bond in methane is given in c(ii)		2

Question Number	Acceptable Answers	Reject	Mark
2 (c)(iv)	Because a (chlorine) radical is regenerated / reformed / reproduced / recycled (by the propagation reactions each time a molecule of product is formed) (1) Allow methyl radical regenerated if initiation step with fission of C – H bond in methane is given in c(ii) and propagation order reversed Ignore references to chain reaction	radical is regenerated by UV light (chlorine) radical is a catalyst	1

Question	Acceptable Answers	Reject	Mark
Number			
2	$CH_3^{\bullet} + CH_3^{\bullet} \rightarrow C_2H_6 / 2CH_3^{\bullet} \rightarrow C_2H_6$		1
(c)(v)			
	Ignore state symbols		
	The single electrons need not be		
	shown		

Question Number	Acceptable Answers	Reject	Mark
2 (d)	UV light does not have enough energy to (ALLOW 'cannot') break the C-H bond (1) So no H free radicals / atoms are formed (therefore cannot combine to form H ₂) (1)	Just 'hydrogen' Just 'so no H ₂ formed	2